Geome	try Regents Lomac 2015-2016	Date <u>1/21</u>	due <u>1/22</u>	Similar Triangles Shortcuts AA,SSS, SAS 6.3R
Name	Loop about that triangles are similar	ilor using the	Per	
LU.			AA, 333, and	
	NOW On the back of this pack	ət		
(1)	Similarity: Shortcuts for showi	ng triangles	are similar	AA~
paper or transparen cy and dry erase markers	(a) How much evidence is suf Triangles are similar if there is a and dilations) that maps one triar Describe in words what the theor	ficient (enoug similarity trans ngle to the oth rems tells us,	gh) to show th sformation (a ner. Below is t then use it to	nat two triangles are similar. ny combination of translations, rotations, reflections, the information from the dilation & side splitter theorems answer the questions that follow.
	X			$X = \frac{X}{XY} = \frac{XM}{XI} = \frac{EM}{YI}$
	₽/>		M	

(b) Is AA (2 pairs of congruent corresponding angles) enough to know you can map one triangle to another? Use the diagram to show that triangle PRI is similar to triangle TSN. (Hint: Can we transform one triangle and be sure that we have one of the two diagrams above?)

AA~ is/is not sufficient to guarantee that two triangles are similar.

SSS~

(2) tracing paper or transparen cy and dry erase markers

2

Similarity: Shortcuts for showing triangles are similar

We have shown that $SSS \cong$ is enough to show that a pair of triangles is congruent. Since congruence is a special case of similarity (when r = 1) we can show that two triangles are similar by SSS~. Instead of showing 3 pairs of congruent sides, we can show that all 3 **ratios** of corresponding side lengths are equal. Show that triangle PRI is similar to triangle TSN.

SSS~ is/is not sufficient to guarantee that two triangles are similar.

(3) tracing paper or transparen cy and dry erase markers

Similarity: Shortcuts for showing triangles are similar

We have shown that SAS \cong is enough to show that a pair of triangles is congruent. Since congruence is a special case of similarity (when r = 1) we can show that two triangles are similar by SAS \sim . Instead of showing 2 pairs of congruent sides, we can show that 2 **ratios** of corresponding side lengths are equal and the pair of angles between are congruent. Show that triangle PRI is similar to triangle TSN.

K

Similarity: Determining similar triangles.

(4) highlighter s & calculators

similar. Circle the letter of your choice.

(4) highlighters & calculators

Similarity: Determining similar triangles.

Are the triangles shown below similar? Use highlighter to mark the parts you are using to show the triangles are similar. Circle the letter of your choice.

- A) similar; AA similarity
- B) similar; SSS similarity
- C) not similar
- D) similar; SAS similarity

- B) similar; SAS similarity
- C) similar; AA similarity
- D) not similar

(5) Similarity: Determining similar triangles.

(5) highlighters

Are the triangles shown below similar? Use highlighter to mark the parts you are using to show the triangles are similar. Write a proof (I know that . . . because . . .).

(b) Given: $\overrightarrow{MN} \parallel \overrightarrow{KL}$ Prove: $\triangle JMN \sim \triangle JKL$

6

Similarity: Determining similar triangles.

highlighters & calculators

Are the triangles shown below similar? Use highlighter to mark the parts you are using to show the triangles are similar. Write a proof (I know that . . . because . . .).

(c) $\triangle UVW$ and $\triangle XYZ$ Х $5\frac{1}{2}$ $5\frac{1}{2}$ 4 $>_{Y}$ 4 $5\frac{1}{2}$ 4 Ζ

(d) Given: SQ = 2QP, TR = 2RP**Prove:** $\triangle PQR \sim \triangle PST$

7

(6)	Similar Triangles Shortcuts: Lesson Summary						
	Describ	e the information needed to use each shortcut and make a sketch.					
	(1)	AA~					
	(2)	SSS~					
	(3)	SAS~					
(7)	Exit Tic	cket					
	ON THE	E LAST PAGE					
(8)	Homew	vork:					

compass, straightedg (1) Draw segment EX. Construct the perpendicular bisector of EX and label it IT. Dilate segment EX from center T with a scale factor of ½. What type of triangles are TEX and TE'X'?

е

(8) Homework:

compass, straightedg e

Are the triangles shown below similar? Use highlighter to mark the parts you are using to show the triangles are similar. Write a proof (I know that . . . because . . .).

(3) Given: CD = 3AC, CE = 3BC

Prove: $\triangle ABC \sim \triangle DEC$

Cont. (8) Homework

(4) Given: $JL = \frac{1}{3}JN$, $JK = \frac{1}{3}JM$ Prove: $\triangle JKL \sim \triangle JMN$ $M = \frac{N}{K} \int_{K}^{N} \int_{K}^{L} \int$

(5) Given: $\overline{AB} \parallel \overline{CD}$, AB = 2CD, AC = 2CEProve: $\triangle ABC \sim \triangle CDE$

Exit Ticket	Name	Date	Per	6.3R
-------------	------	------	-----	------

(1) The LO (Learning Outcomes) are written below your name on the front of this packet. Demonstrate your achievement of these outcomes by doing the following:

Provide sufficient information to prove that each pair of triangles is similar **OR** to state that the triangles cannot be proven similar.

DO NOW	Name	_Date	Per	
(1) M/hat define	and a similarity transformation O (Linte and Land	- (1)		

(1) What defines a similarity transformation? (Hint: see lesson 6.1)

(2) How does this cartoon relate to dilation?

We're so similar!

